

Aluminum electrolytic capacitors

Capacitors with screw terminals

 Series/Type:
 B41560, B41580

 Date:
 December 2006

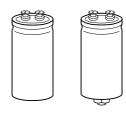
Capacitors with screw terminals

B41560, B41580

Compact - 105 °C

Long-life grade capacitors

Applications


- General industrial electronics
- Professional power supplies

Features

- High reliability, extremely good electrical characteristics
- High CV product, i.e. extremely compact
- High ripple current capability
- All-welded construction ensures reliable electrical contact
- Version with low-inductance design available

Construction

- Charge-discharge proof, polar
- Aluminum case with insulating sleeve
- Poles with screw terminal connections
- Mounting with ring clips, clamps or threaded stud
- The bases of types with threaded stud are not insulated

B41560

B41580

Compact - 105 °C

Compact – 105

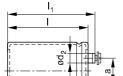
Specifications and characteristics in brief

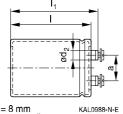
25 100 V DC	25 100 V DC					
1.15 · V _R						
1500 330000 μF						
±20% ≙ M						
$I_{leak} \le 0.3 \ \mu A \cdot \left(\frac{C}{\mu}\right)$	$\frac{R}{F} \cdot \frac{V_R}{V} \Big)^{0.7}$	+ 4 μΑ				
Approx. 20 nH						
Capacitors with lov	v-inducta	nce design:				
d ≥ 64.3 mm: appr	ox. 13 nH	l				
	Require	ments:				
> 3000 h	Δ C/C $\leq \pm 45\%$ of initial value					
> 6000 h	ESR	≤ 3 times initial specified limit				
> 250000 h	I _{leak}	≤ initial specified limit				
	Post tes	t requirements:				
2000 h	ΔC/C	≤±15% of initial value				
	ESR	≤ 1.3 times initial specified limit				
	I _{leak}	≤ initial specified limit				
To IEC 60068-2-6,	test Fc:					
Displacement amp	litude 0.7	5 mm, frequency range 10 55 Hz,				
acceleration max.	10 <i>g</i> , dura	ation 3 × 2 h.				
Capacitor mounted	by its bo	ody which is rigidly clamped to the work				
surface.						
To IEC 60068-1:						
40/105/56 (-40 °C/+105 °C/56 days damp heat test)						
	0301-810					
IEC 60384-4						
	1.15 · V_R 1500 330000 µF ±20% \triangleq M I _{leak} ≤ 0.3 µA · $\left(\frac{C}{\mu}\right)$ Approx. 20 nH Capacitors with low d ≥ 64.3 mm: approximate approxi	1.15 · V_R 1500 330000 µF ±20% \triangleq M I _{leak} ≤ 0.3 µA · $\left(\frac{C_R}{\mu F} \cdot \frac{V_R}{V}\right)^{0.7}$ Approx. 20 nH Capacitors with low-inducta d ≥ 64.3 mm: approx. 13 nH > 3000 h > 6000 h = SR > 250000 h I _{leak} Post tes 2000 h $\Delta C/C$ ESR I _{leak} To IEC 60068-2-6, test Fc: Displacement amplitude 0.7 acceleration max. 10 g , dura Capacitor mounted by its be surface. To IEC 60068-1: 40/105/56 (−40 °C/+105 °C				

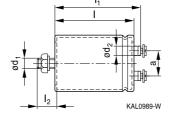
Ripple current capability

Due to the ripple current capability of the contact elements, the following current upper limits must not be exceeded:

Capacitor diameter	≤ 51.6 mm	64.3 mm	76.9 mm
I _{AC.max}	34 A	45 A	57 A




Compact - 105 °C


Dimensional drawings

Ring clip/clamp mounting

B41580 Threaded stud mounting

M5: Min. reach of screw = 8 mm M6: Min. reach of screw = 12 mm*)

Positive pole marking: +

Screw terminals with UNF threads are available upon request.

Dimensions and weights

Ter-	Dimensions (mm) with insulating sleeve						Approx.	
minal	d	l±1	I ₁ ±1	$I_2 + 0/-1$	d_1	d ₂ max.	a +0.2/-0.4	weight (g)
M5	35.7 +0/-0.8	55.7	62.2	13	M8	8.2	12.7	65
M5	35.7 +0/-0.8	80.7	87.2	13	M8	8.2	12.7	105
M5	35.7 +0/-0.8	105.7	112.2	13	M8	8.2	12.7	135
M5	51.6 +0/-0.8	80.7	87.2	17	M12	10.2	22.2	220
M5	51.6 +0/-0.8	105.7	112.2	17	M12	10.2	22.2	280
M5	64.3 +0/-0.8	105.7	112.2	17	M12	13.2	28.5	440
M6	76.9 +0/-0.7	105.7	111.5	17	M12	17.7	31.7	620
M6	76.9 +0/-0.7	143.2	149.0	17	M12	17.7	31.7	840

Dimensions are also valid for low-inductance design.

Packing

Capacitor diameter d	Packing units (pcs.)	Capacitor diameter d	Packing units (pcs.)
35.7 mm	36	64.3 mm	15
51.6 mm	22	76.9 mm	12

For ecological reasons the packing is pure cardboard.

^{*) 9.5} mm for low-inductance design

Compact - 105 °C

Special design

■ Low-inductance design

Design	Identification in 3rd block of ordering code	Remark
Low inductance (13 nH)	M003	For capacitors with diameter d ≥ 64.3 mm

Accessories

The following items are included in the delivery package, but are not fastened to the capacitors:

	Thread	Toothed washers	Screws/nuts	Maximum torque
For terminals	M5	A 5.1 DIN 6797	Cylinder-head screw M5 × 8 DIN 84-4.8	2 Nm
	M6	A 6.4 DIN 6797	Cylinder-head screw M6 × 12 DIN 85-4.8	2.5 Nm
For mounting	M8	J 8.2 DIN 6797	Hex nut BM 8 DIN 439	4 Nm
	M12	J 12.5 DIN 6797	Hex nut BM 12 DIN 439	10 Nm

The following items must be ordered separately. For details, refer to chapter "Capacitors with screw terminals - Accessories".

Item	Туре
Ring clips	B44030
Clamps for capacitors with d ≥ 64.3 mm	B44030
Insulating parts	B44020

 $\textbf{Compact} - \textbf{105}~^{\circ}\textbf{C}$

Overview of available types

V _R (V DC)	25	40	63	100				
	Case dimensions d × I (mm)							
C _R (μF)								
1500				35.7 × 55.7				
2200				35.7 × 80.7				
3300				35.7 × 80.7				
4700			35.7 × 55.7	35.7 × 105.7				
6800			35.7 × 80.7	51.6 × 80.7				
10000		35.7 × 55.7	35.7 × 105.7	51.6 × 105.7				
15000	35.7 × 55.7	35.7 × 80.7	51.6 × 80.7	64.3 × 105.7				
22000	35.7 × 80.7	35.7 × 105.7	51.6 × 105.7	76.9 × 105.7				
33000	35.7 × 80.7	51.6 × 80.7	64.3 × 105.7	76.9 × 143.2				
47000	35.7 × 105.7	51.6 × 105.7	64.3 × 105.7					
68000	51.6 × 80.7	51.6 × 105.7	76.9×105.7					
100000	51.6 × 105.7	64.3 × 105.7	76.9×143.2					
150000	64.3 × 105.7	76.9 × 105.7						
220000	76.9 × 105.7	76.9 × 143.2						
330000	76.9 × 143.2							

The capacitance and voltage ratings listed above are available in different cases upon request.

Other voltage and capacitance ratings are also available upon request.

Compact - 105 °C

Technical data and ordering codes

C _R	Case	ESR _{tvp}	ESR _{max}	Z _{max}	I _{AC,max}	I _{AC,max}	I _{AC,R}	Ordering code
100 Hz	dimensions	100 Hz	100 Hz	10 kHz	100 Hz	100 Hz	100 Hz	(composition see
20 °C	d×I	20 °C	20 °C	20 °C	40 °C	85 °C	105 °C	below)
μF	mm	mΩ	mΩ	mΩ	A	A	Α	DOIO!!
<u> </u>		11122	11122	11122	^	^	^	
$V_{R} = 25$		0.4	40	0.4	10	44		D 44 5 + 0 A 5 4 5 0 M 0 0 0
15000	35.7 × 55.7	21	42	31	18	11	5.3	B415*0A5159M000
22000	35.7 × 80.7	14	29	22	25	15	7.4	B415*0A5229M000
33000	35.7 × 80.7	15	20	17	30	18	8.8	B415*0A5339M000
47000	35.7×105.7	8.0	16	13	30	23	11	B415*0A5479M000
68000	51.6 × 80.7	4.8	12	9.3	34	26	13	B415*0A5689M000
100000	51.6×105.7	4.7	9.4	7.6	34	32	15	B415*0A5100M000
150000	64.3×105.7	4.0	8.0	6.4	45	38	18	B415*0A5150M00#
220000	76.9×105.7	3.5	5.3	5.6	57	40	20	B415*0A5220M00#
330000	76.9×143.2	3.0	4.5	5.1	57	50	24	B415*0A5330M00#
$V_{R} = 40$	V DC							
10000	35.7 × 55.7	17	42	37	18	11	5.3	B415*0A7109M000
15000	35.7 × 80.7	12	23	16	25	15	7.4	B415*0A7159M000
22000	35.7×105.7	8.5	17	14	30	20	9.5	B415*0A7229M000
33000	51.6 × 80.7	6.0	12	13	34	23	11	B415*0A7339M000
47000	51.6 × 105.7	5.0	10	10	34	29	14	B415*0A7479M000
68000	51.6 × 105.7	4.5	9.0	8.4	34	30	15	B415*0A7689M000
100000	64.3 × 105.7	4.1	8.2	7.0	45	38	18	B415*0A7100M00#
150000	76.9×105.7	3.6	7.2	6.0	57	41	20	B415*0A7150M00#
220000	76.9×143.2	3.3	5.0	5.4	57	49	24	B415*0A7220M00#
$V_{R} = 63$	V DC							
4700	35.7 × 55.7	30	60	64	15	9.2	4.4	B415*0A8478M000
6800	35.7 × 80.7	22	44	46	20	12	6.0	B415*0A8688M000
10000	35.7×105.7	14	27	16	28	17	8.1	B415*0A8109M000
15000	51.6 × 80.7	9.5	19	14	31	19	9.1	B415*0A8159M000
22000	51.6 × 105.7	7.0	14	14	34	25	12	B415*0A8229M000
33000	64.3 × 105.7	5.5	11	12	45	31	15	B415*0A8339M00#
47000	64.3 × 105.7	4.8	10	9.4	45	35	17	B415*0A8479M00#
68000	76.9×105.7	3.3	5.0	7.8	57	39	19	B415*0A8689M00#
100000	76.9×103.7 76.9×143.2	3.3	5.0	6.6	57	48	23	B415*0A8100M00#
100000	10.9 × 143.2	3.3	5.0	0.0	5/	40	23	D413 UA61UUIVIUU#

Composition of ordering code

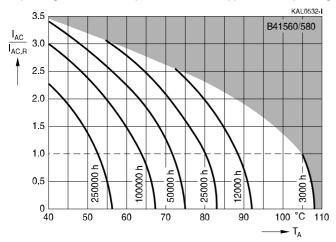
- * = Mounting style
 - 6 = for capacitors with ring clip/clamp mounting
 - 8 = for capacitors with threaded stud
- # = Design
 - 0 = for capacitors with standard inductance
 - 3 = for capacitors with low inductance (13 nH) only capacitors with diameter d \geq 64.3 mm

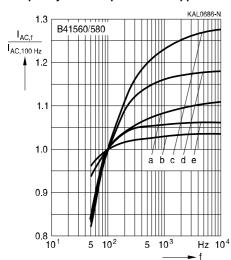
 $\textbf{Compact} - \textbf{105}~^{\circ}\textbf{C}$

Technical data and ordering codes

C _R	Case	ESR _{typ}	ESR _{max}	Z _{max}	$I_{AC,max}$	I _{AC,max}	$I_{AC,R}$	Ordering code
100 Hz	dimensions	100 Hz	100 Hz	10 kHz	100 Hz	100 Hz	100 Hz	(composition see
20 °C	$d \times I$	20 °C	20 °C	20 °C	40 °C	85 °C	105 °C	below)
μF	mm	mΩ	$m\Omega$	$m\Omega$	Α	Α	Α	
$V_{R} = 100$	V DC							
1500	35.7 × 55.7	52	104	90	11	7.0	3.4	B415*0A9158M000
2200	35.7×80.7	35	70	77	16	9.9	4.7	B415*0A9228M000
3300	35.7 × 80.7	24	48	53	19	12	5.7	B415*0A9338M000
4700	35.7×105.7	18	35	39	26	16	7.5	B415*0A9478M000
6800	51.6 × 80.7	12	24	25	30	18	8.7	B415*0A9688M000
10000	51.6 × 105.7	7.0	14	12	34	24	11	B415*0A9109M000
15000	64.3×105.7	5.0	10	10	45	30	15	B415*0A9159M00#
22000	76.9×105.7	4.0	6.0	6.0	57	35	17	B415*0A9229M00#
33000	76.9×143.2	3.3	5.0	8.4	57	44	21	B415*0A9339M00#

Composition of ordering code


- * = Mounting style
 - 6 = for capacitors with ring clip/clamp mounting
 - 8 = for capacitors with threaded stud
- # = Design
 - 0 = for capacitors with standard inductance
 - 3 = for capacitors with low inductance (13 nH) only capacitors with diameter $d \ge 64.3$ mm



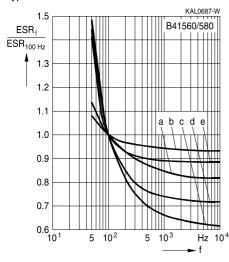
Compact - 105 °C

 $\begin{tabular}{ll} \textbf{Useful life} \\ \textbf{depending on ambient temperature T_A under ripple current operating conditions}^1) \end{tabular}$

Frequency factor of permissible ripple current \mathbf{I}_{AC} versus frequency \mathbf{f}

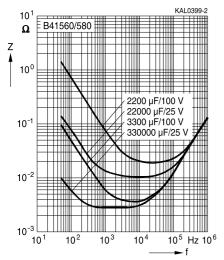
V _R (V DC)	≤ 63	100
d= 35.7 mm	а	С
d = 51.6 mm	а	d
d = 64.3 mm	а	d
d = 76.9 mm	b	е

¹⁾ Refer to chapter "General technical information, 5.3 Calculation of useful life" on how to interpret the useful life graphs.



Compact - 105 °C

Frequency characteristics of ESR


Typical behavior

V _R (V DC)	≤ 63	100
d = 35.7 mm	а	С
d = 51.6 mm	а	d
d = 64.3 mm	а	d
d = 76.9 mm	b	е

Impedance Z versus frequency f

Typical behavior at 20 $^{\circ}\text{C}$

Compact - 105 °C

Cautions and warnings

Personal safety

The electrolytes used by EPCOS have not only been optimized with a view to the intended application, but also with regard to health and environmental compatibility. They do not contain any solvents that are detrimental to health, e.g. dimethyl formamide (DMF) or dimethyl acetamide (DMAC).

Furthermore, part of the high-voltage electrolytes used by EPCOS are self-extinguishing. They contain flame-retarding substances which will quickly extinguish any flame that may have been ignited.

As far as possible, EPCOS does not use any dangerous chemicals or compounds to produce operating electrolytes. However, in exceptional cases, such materials must be used in order to achieve specific physical and electrical properties because no safe substitute materials are currently known. However, the amount of dangerous materials used in our products has been limited to an absolute minimum. Nevertheless, the following rules should be observed when handling Al electrolytic capacitors:

- Any escaping electrolyte should not come into contact with eyes or skin.
- If electrolyte does come into contact with the skin, wash the affected parts immediately with running water. If the eyes are affected, rinse them for 10 minutes with plenty of water. If symptoms persist, seek medical treatment.
- Avoid breathing in electrolyte vapor or mists. Workplaces and other affected areas should be well ventilated. Clothing that has been contaminated by electrolyte must be changed and rinsed in water.

Compact - 105 °C

Product safety

The table below summarize the safety instructions that must be observed without fail. A detailed description can be found in the relevant sections of chapter "General technical information".

Topic	Safety information	Reference
		Chapter "General
		technical information"
Polarity	Make sure that polar capacitors are connected with the right polarity.	1 "Basic construction of
	3 4 4 4 7	aluminum electrolytic
		capacitors"
Reverse voltage	Voltages polarity classes should be prevented by	3.1.6
	connecting a diode.	"Reverse voltage"
Upper category	Do not exceed the upper category temperatur.	7.2
temperature		"Maximum permissible
		operating temperature"
Maintenance	Make periodic inspections of the capacitors.	10
	Before the inspection, make sure that the power	"Maintenance"
	supply is turned off and carefully discharge the	
	electricity of the capacitors.	
	Do not apply any mechanical stress to the	
	capacitor terminals.	
Mounting	Do not mount the capacitor with the terminals	11.1.
position of screw	(safety vent) upside down.	"Mounting positions of
terminal capacitors		capacitors with screw
		terminals"
Mounting of	The internal structure of single-ended capacitors	11.4
single-ended	might be damaged if excessive force is applied to	"Mounting
capacitors	the lead wires.	considerations for
	Avoid any compressive, tensile or flexural stress.	single-ended capacitors"
	Do not move the capacitor after soldering to PC board.	
	Do not pick up the PC board by the soldered	
	capacitor.	
	Do not insert the capacitor on the PC board with a	
	hole space different to the lead space specified.	
Robustness of	The following maximum tightening torques must	11.3
terminals	not be exceeded when connecting screw	"Mounting torques"
	terminals:	
	M5: 2 Nm	
	M6: 2.5 Nm	
Soldering	Do not exceed the specified time or temperature	11.5
	limits during soldering.	"Soldering"

341560, B41580	
mpact – 105 °C	Ĺ

Topic	Safety information	Reference Chapter "General technical information"
Soldering,	Do not allow halogenated hydrocarbons to come	11.6
cleaning agents	into contact with aluminum electrolytic capacitors.	"Cleaning agents"
Passive	Avoid external energy, such as fire or electricity.	8.1
flammability		"Passive flammability"
Active	Avoid overload of the capacitors.	8.2
flammability		"Active flammability"
		Reference Chapter "Capacitors with screw terminals"
Breakdown strength of insulating sleeves	Do not damage the insulating sleeve, especially when ring clips are used for mounting.	"Screw terminals - accessories"

Important notes

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, EPCOS is either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an EPCOS product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of passive electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of a passive electronic component could endanger human life or health (e.g. in accident prevention or life-saving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of a passive electronic component.
- The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as "hazardous"). Useful information on this will be found in our Material Data Sheets on the Internet (www.epcos.com/material). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available.
- Unless otherwise agreed in individual contracts, all orders are subject to the current version of the "General Terms of Delivery for Products and Services in the Electrical Industry" published by the German Electrical and Electronics Industry Association (ZVEI).
- 7. The trade names EPCOS, EPCOS-JONES, BAOKE, Alu-X, CeraDiode, CSSP, MLSC, PhaseCap, PhaseMod, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMID, SIOV, SIP5D, SIP5K, UltraCap, WindCap are trademarks registered or pending in Europe and in other countries. Further information will be found on the Internet at www.epcos.com/trademarks.